10,110 research outputs found

    Differential decay rates of CP-even and CP-odd Higgs bosons to top and bottom quarks at NNLO QCD

    Full text link
    We consider the decay of a neutral Higgs boson of arbitrary CP nature to a massive quark antiquark pair at next-to-next-to-leading order in perturbative QCD. Our analysis is made at the differential level using the antenna subtraction framework. We apply our general set-up to the decays of a CP-even and CP-odd heavy Higgs boson to a top-quark top-antiquark pair and to the decay of the 125 GeV Higgs boson to a massive bottom-quark bottom-antiquark pair. In the latter case we calculate, in particular, the two-jet, three-jet, and four-jet decay rates and, for two-jet events, the energy distribution of the leading jet.Comment: Latex, 23 pages, a reference adde

    Quantum Robot: Structure, Algorithms and Applications

    Full text link
    A kind of brand-new robot, quantum robot, is proposed through fusing quantum theory with robot technology. Quantum robot is essentially a complex quantum system and it is generally composed of three fundamental parts: MQCU (multi quantum computing units), quantum controller/actuator, and information acquisition units. Corresponding to the system structure, several learning control algorithms including quantum searching algorithm and quantum reinforcement learning are presented for quantum robot. The theoretic results show that quantum robot can reduce the complexity of O(N^2) in traditional robot to O(N^(3/2)) using quantum searching algorithm, and the simulation results demonstrate that quantum robot is also superior to traditional robot in efficient learning by novel quantum reinforcement learning algorithm. Considering the advantages of quantum robot, its some potential important applications are also analyzed and prospected.Comment: 19 pages, 4 figures, 2 table

    Handgrip pattern recognition

    Get PDF
    There are numerous tragic gun deaths each year. Making handguns safer by personalizing them could prevent most such tragedies. Personalized handguns, also called smart guns, are handguns that can only be fired by the authorized user. Handgrip pattern recognition holds great promise in the development of the smart gun. Two algorithms, static analysis algorithm and dynamic analysis algorithm, were developed to find the patterns of a person about how to grasp a handgun. The static analysis algorithm measured 160 subjects\u27 fingertip placements on the replica gun handle. The cluster analysis and discriminant analysis were applied to these fingertip placements, and a classification tree was built to find the fingertip pattern for each subject. The dynamic analysis algorithm collected and measured 24 subjects\u27 handgrip pressure waveforms during the trigger pulling stage. A handgrip recognition algorithm was developed to find the correct pattern. A DSP box was built to make the handgrip pattern recognition to be done in real time. A real gun was used to evaluate the handgrip recognition algorithm. The result was shown and it proves that such a handgrip recognition system works well as a prototype

    \u3cem\u3eHP-DAEMON\u3c/em\u3e: \u3cem\u3eH\u3c/em\u3eigh \u3cem\u3eP\u3c/em\u3eerformance \u3cem\u3eD\u3c/em\u3eistributed \u3cem\u3eA\u3c/em\u3edaptive \u3cem\u3eE\u3c/em\u3energy-efficient \u3cem\u3eM\u3c/em\u3eatrix-multiplicati\u3cem\u3eON\u3c/em\u3e

    Get PDF
    The demands of improving energy efficiency for high performance scientific applications arise crucially nowadays. Software-controlled hardware solutions directed by Dynamic Voltage and Frequency Scaling (DVFS) have shown their effectiveness extensively. Although DVFS is beneficial to green computing, introducing DVFS itself can incur non-negligible overhead, if there exist a large number of frequency switches issued by DVFS. In this paper, we propose a strategy to achieve the optimal energy savings for distributed matrix multiplication via algorithmically trading more computation and communication at a time adaptively with user-specified memory costs for less DVFS switches, which saves 7.5% more energy on average than a classic strategy. Moreover, we leverage a high performance communication scheme for fully exploiting network bandwidth via pipeline broadcast. Overall, the integrated approach achieves substantial energy savings (up to 51.4%) and performance gain (28.6% on average) compared to ScaLAPACK pdgemm() on a cluster with an Ethernet switch, and outperforms ScaLAPACK and DPLASMA pdgemm() respectively by 33.3% and 32.7% on average on a cluster with an Infiniband switch

    QCD corrections to single slepton production at hadron colliders

    Full text link
    We evaluate the cross section for single slepton production at hadron colliders in supersymmetric theories with R-parity violating interactions to the next-to-leading order in QCD. We obtain fully differential cross section by using the phase space slicing method. We also perform soft-gluon resummation to all order in αs\alpha_s of leading logarithm to obtain a complete transverse momentum spectrum of the slepton. We find that the full transverse momentum spectrum is peaked at a few GeV, consistent with the early results for Drell-Yan production of lepton pairs. We also consider the contribution from gluon fusion via quark-triangle loop diagrams dominated by the bb-quark loop. The cross section of this process is significantly smaller than that of the tree-level process induced by the initial bbˉb\bar{b} annihilation.Comment: one new reference is adde

    Kaon and pion parton distribution amplitudes to twist-three

    Full text link
    We compute all kaon and pion parton distribution amplitudes (PDAs) to twist-three and find that only the pseudotensor PDA can reasonably be approximated by its conformal limit expression. At terrestrially accessible energy scales, the twist-two and pseudoscalar twist-three PDAs differ significantly from those functions commonly associated with their forms in QCD's conformal limit. In all amplitudes studied, SU(3) flavour-symmetry breaking is typically a 13% effect. This scale is determined by nonperturbative dynamics; namely, the current-quark-mass dependence of dynamical chiral symmetry breaking. The heavier-quark is favoured by this distortion, for example, support is shifted to the s-quark in the negative kaon. It appears, therefore, that at energy scales accessible with existing and foreseeable facilities, one may obtain reliable expectations for experimental outcomes by using these "strongly dressed" PDAs in formulae for hard exclusive processes. Following this procedure, any discrepancies between experiment and theory will be significantly smaller than those produced by using the conformal-limit PDAs. Moreover, the magnitude of any disagreement will either be a better estimate of higher-order, higher-twist effects or provide more realistic constraints on the Standard Model.Comment: 14 pages, 4 figures, 2 tables. arXiv admin note: text overlap with arXiv:1406.335
    • …
    corecore